问答题
设某消费者的效用函数为柯布道格拉斯类型的,即U=xαyβ,商品x和商品y的价格分别为Px和Py,消费者的收入为M,α和β为常数,且α+β=1。 (1)求该消费者关于商品x和商品y的需求函数。 (2)证明当商品x和y的价格以及消费者的收入同时变动一个比例时,消费者对两商品的需求关系维持不变。 (3)证明消费者效用函数中的参数α和β分别为商品x和商品y的消费支出占消费者收入的份额。
式(4)即为消费者关于商品x和商品y的需求函数。上述休需求函数的图形如图......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
问答题 假定某消费者的效用函数为U=q0.5+3M,其中,q为某商品的消费量,M为收入。求: (1)该消费者的需求函数; (2)该消费者的反需求函数; (3)当p=1/12,q=4时的消费者剩余。
问答题 令某消费者的收入为M,两商品的价格为P1、P2。假定该消费者的无差异曲线是线性的,且斜率为-a。求该消费者的最优商品消费组合。
问答题 假定某消费者的效用函数为,两商品的价格分别为P1,P2,消费者的收入为M。分别求该消费者关于商品1和商品2的需求函数。